

1

2

Partial differential equations

- The heat equation models the transfer of heat within a system

$$
\frac{\partial}{\partial t} u(\mathbf{x}, t)=\alpha \nabla^{2} u(\mathbf{x}, t)
$$

- The value α is the diffusivity coefficient, which is proportional to how quickly heat can travel throughout the medium
- If the heat transfer is restricted to one dimension,
this simplifies to

$$
\frac{\partial}{\partial t} u(x, t)=\alpha \frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

- This is the case if it is heat transfer along a wire

Partial differential equations

- In one dimension, this says:

$$
\frac{\partial}{\partial t} u(x, t)=\alpha \frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

- The rate of change of the temperature over time is proportional to the concavity of the temperature in space
- If the concavity is locally zero (the temperature is constant or linearly changing), there is no local change in temperature

Partial differential equations

- In one dimension, we can substitute our two approximations:

$$
\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}=\alpha \frac{u(x-h, t)-2 u(x, t)+u(x+h, t)}{h^{2}}
$$

- Note we are only using the $\mathrm{O}(h)$ approximation
- We can rewrite this as follows:

$$
u(x, t+\Delta t)=u(x, t)+\Delta t \alpha \frac{u(x-h, t)-2 u(x, t)+u(x+h, t)}{h^{2}}
$$

- Compare this with Euler's method:

$$
f(t+\Delta t)=f(t)+(\Delta t) f^{(1)}(t)
$$

5

Approximating partial derivatives

- Suppose here we have our system:

7

Approximating partial derivatives

- Thus, represent the temperature of the bar by a function

$$
u(x, t)
$$

- The spatial variable x must fall between the two end-points:

$$
a \leq x \leq b
$$

- Suppose the end points are $[0,1]$, in which case $u(0.5, t)$ is the temperature at the mid-point at time t
- If $t=0 \mathrm{~s}$, then the temperature is the initial temperature $20^{\circ} \mathrm{C}$
- Suppose $t=10 \mathrm{~s}$
- If the material is insulating (e.g., wood), it is unlikely the temperature will be very different
- If the material conducts heat rapidly (aluminium), it may already be getting warm to the touch
- After a long time, we expect the temperature in the middle to be the average of the boundary values $50^{\circ} \mathrm{C}$

Functions of a vector variable

- We don't know what $u(x, t)$ is, so we will approximate it
- First, divide the interval $[a, b]$ into n_{x} sub-intervals, each of width h
- Thus, $x_{k}=a+k h$ so $x_{0}=a$ and $x_{n_{x}}=b$
- Next, we cannot approximate the solution at each point in time,
so we will break time into steps
- Define $t_{\ell}=t_{0}+\ell \Delta t$
- We will try to approximate $u\left(x_{k}, t_{\ell}\right)$
- As before, $u\left(x_{k}, t_{\ell}\right) \approx u_{k, \ell}$

9

The heat equation

Functions of a vector variable

- To start, we have our initial conditions:
- In this case, $u\left(x_{k}, t_{0}\right) \approx u_{k, 0}=20^{\circ} \mathrm{C}$ for an $k=1,2, \ldots, n_{x}-1$
- We also have two boundary conditions:
- One side of the bar is in contact with a heat sink at $0^{\circ} \mathrm{C}$
- Thus, $u\left(a, t_{\ell}\right)=u\left(x_{0}, t_{\ell}\right)=u_{0, \ell}=0$ for $\ell=0,1,2,3, \ldots$
- The other side is in contact with a heat source at $100^{\circ} \mathrm{C}$

$$
\text { - Thus, } u\left(b, t_{\ell}\right)=u\left(x_{n_{x}}, t_{\ell}\right)=u_{n_{x}, \ell}=100 \text { for } \ell=0,1,2,3, \ldots
$$

Functions of a vector variable

- So now what?

$$
\begin{aligned}
u(x, t+\Delta t) & =u(x, t)+\Delta t \alpha \frac{u(x-h, t)-2 u(x, t)+u(x+h, t)}{h^{2}} \\
u\left(x_{k}, t_{\ell}+\Delta t\right) & =u\left(x_{k}, t_{\ell}\right)+\Delta t \alpha \frac{u\left(x_{k}-h, t_{\ell}\right)-2 u\left(x_{k}, t_{\ell}\right)+u\left(x_{k}+h, t_{\ell}\right)}{h^{2}} \\
u\left(x_{k}, t_{\ell+1}\right) & =u\left(x_{k}, t_{\ell}\right)+\Delta t \alpha \frac{u\left(x_{k-1}, t_{\ell}\right)-2 u\left(x_{k}, t_{\ell}\right)+u\left(x_{k+1}, t_{\ell}\right)}{h^{2}} \\
u_{k, \ell+1} & =u_{k, \ell}+\Delta t \alpha \frac{u_{k-1, \ell}-2 u_{k, \ell}+u_{k+1, \ell}}{h^{2}}
\end{aligned}
$$

11

Restrictions

- There is one restriction to this algorithm:

$$
\frac{\Delta t \alpha}{h^{2}}<\frac{1}{2}
$$

- A reasonable strategy: given α and h, suppose we want to approximate the solution from t_{0} to t_{f}
- We want $n_{t} \Delta t=t_{f}-t_{0}$ so $\Delta t=\frac{t_{f}-t_{0}}{n_{t}}$
- Thus, let's ensure $\frac{t_{f}-t_{0}}{n_{t}} \frac{\alpha}{h^{2}} \leq \frac{1}{4}$
- That is, $\frac{1}{n_{t}} \leq \frac{h^{2}}{4 \alpha\left(t_{f}-t_{0}\right)}$

$$
n_{t} \geq \frac{4 \alpha\left(t_{f}-t_{0}\right)}{h^{2}} \quad n_{t}=\left\lceil\frac{4 \alpha\left(t_{f}-t_{0}\right)}{h^{2}}\right\rceil
$$

13

Implementation

- Why not just program this in C++?
- It seems like a straight-forward translation
- MATLAB is an interpreted language, meaning it is, in general, slow
- There are, however, functions, that simply call compiled routines
- Calling a compiled routine can be as fast as authoring that function in C++
- Where can we accomplish such a speed up?

Implementation

- Additionally, the operation of calculating $x_{k+1}-2 x_{k}+x_{k-1}$ is so common, there is a MATLAB function to repeated perform this:

```
diff( x );
# This has one fewer entries
            x(2) - x(1)
            x(3) - x(2)
        x(end) - x(end-1)
diff( x, 2 ); # This has two fewer entries
        x(3) - 2*x(2) + x(1)
        x(4) - 2*x(3) + x(2)
        x(end) - 2*x(end-1) + x(end-2)
```


19

21

Error analysis

- Recall the formula using h was $\mathrm{O}\left(h^{2}\right)$, but the formula using Δt was $\mathrm{O}(\Delta t)$
- Recall, however, that

$$
\begin{gathered}
n_{t} \approx \frac{4 \alpha\left(t_{f}-t_{0}\right)}{h^{2}} \quad \frac{h^{2}}{4 \alpha} \approx \frac{t_{f}-t_{0}}{n_{t}} \\
\Delta t=\frac{t_{f}-t_{0}}{n_{t}}
\end{gathered}
$$

- Thus, $\Delta t \approx \frac{h^{2}}{4 \alpha}$ so if the error is $\mathrm{O}(\Delta t)$, it is also $\mathrm{O}\left(h^{2}\right)$

Neumann boundary conditions

- What happens if one boundary is insulated or has a Neumann boundary condition?
- Recall, in our code, we
- Calculated the next interior points
- Then set the boundary conditions for that same ℓ

```
lu
```


Neumann boundary conditions

- Recall from the last topic, we saw that if a boundary satisfied a

Neumann condition, the following were true:

$$
u_{0}=-\frac{2}{3} u_{a}^{(1)} h+\frac{4}{3} u_{1}-\frac{1}{3} u_{2} \quad u_{n}=\frac{2}{3} u_{b}^{(1)} h+\frac{4}{3} u_{n-1}-\frac{1}{3} u_{n-2}
$$

- Suppose a boundary has a Neumann condition:
- Calculated the next interior points
- Calculate the boundary value based on the Neumann condition

Implementation

function [xs, ts, Us] = heat(alpha, x_rng, t_rng, u_init, u_bndry, u_dirichlet, $n x$) \# Initialization...
dirichlet = u_dirichlet(ts(1));
boundary = u_bndry(ts(1));
if dirichlet(1)

$\operatorname{Us}(1,1)=$ boundary (1) ;

$$
u_{0}=-\frac{2}{3} u_{a}^{(1)} h+\frac{4}{3} u_{1}-\frac{1}{3} u_{2}
$$

else

$$
\operatorname{Us}(1,1)=-2 \cdot 0 / 3.0 * \text { boundary }(1) * h+4.0 / 3.0 * \operatorname{Us}(2,1)-1 \cdot 0 / 3.0 * \operatorname{Us}(3,1) ;
$$

end
if dirichlet(2)
Us(nx+1, 1) = boundary(2);
$u_{n}=\frac{2}{3} u_{b}^{(1)} h+\frac{4}{3} u_{n-1}-\frac{1}{3} u_{n-2}$
else
$\operatorname{Us}(n x+1,1)=2.0 / 3.0 *$ boundary $(2) * h+4.0 / 3.0 * \operatorname{Us}(n x, 1)-1.0 / 3.0 * \operatorname{Us}(n x-1,1) ;$
end
\# Populate the balance of the matrix 'Us'
end

27

29

31

Summary

- Following this topic, you now
- Understand how to approximate the heat equation with a finite-difference equation
- Have seen how to approximate the solution to the heat equation given both initial states and boundary values in one dimension
- Are aware of how to implement such a solution in MATLAB
- Have seen two examples
- Understand how to deal with insulated boundary conditions with implementations and examples

35

36

