
3/30/2021

1

ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Approximating solutions
to the heat equation

Introduction

• In this topic, we will

– Introduce the heat equation

– Convert the heat equation to a finite-difference equation

– Discuss both initial and boundary conditions for such a
situation in one dimension

– Look at an implementation in MATLAB

– Look at two examples

– Discuss Neumann conditions and look at the necessary
modifications required and additional examples

The heat equation

2

1

2

3/30/2021

2

Partial differential equations

• The heat equation models the transfer of heat within a system

– The value a is the diffusivity coefficient,
which is proportional to how quickly heat can travel
throughout the medium

• If the heat transfer is restricted to one dimension,
this simplifies to

– This is the case if it is heat transfer along a wire

The heat equation

3

() ()2, ,u t u t
t

a


= 


x x

() ()
2

2
, ,u x t u x t

t x
a

 
=

 

Partial differential equations

• In one dimension, this says:

– The rate of change of the temperature over time is proportional
to the concavity of the temperature in space

– If the concavity is locally zero (the temperature is constant or
linearly changing), there is no local change in temperature

The heat equation

4

() ()
2

2
, ,u x t u x t

t x
a

 
=

 

3

4

3/30/2021

3

Partial differential equations

• In one dimension, we can substitute our two approximations:

– Note we are only using the O(h) approximation

• We can rewrite this as follows:

– Compare this with Euler’s method:

The heat equation

5

() () () () ()
2

, , , 2 , ,u x t t u x t u x h t u x t u x h t

t h
a

+  − − − + +
=



() ()
() () ()

2

, 2 , ,
, ,

u x h t u x t u x h t
u x t t u x t t

h
a

− − + +
+  = + 

() () () () ()1
f t t f t t f t+  = + 

Partial derivatives

• Suppose we have a wire or other connection between two large
bodies:

– For example, with Dirichlet conditions, one end may be in
contact with a body that is 100°C while the other may be in
contact with a cooling unit at 0°C

– When the system is turned on,
the wire has a temperature at each point

• Perhaps 20°C

– After a few seconds, depending on the material, the temperature
near the heat source will increase, while the temperature near
the heat sink will decrease, though more slowly

The heat equation

6

5

6

3/30/2021

4

Approximating partial derivatives

• Suppose here we have our system:

The heat equation

7

Approximating partial derivatives

• Thus, represent the temperature of the bar by a function

u(x, t)

– The spatial variable x must fall between the two end-points:

a ≤ x ≤ b

– Suppose the end points are [0, 1], in which case u(0.5, t) is the
temperature at the mid-point at time t

• If t = 0 s, then the temperature is the initial temperature 20°C

• Suppose t = 10 s

– If the material is insulating (e.g., wood), it is unlikely the
temperature will be very different

– If the material conducts heat rapidly (aluminium), it may
already be getting warm to the touch

• After a long time, we expect the temperature in the middle to be
the average of the boundary values 50°C

The heat equation

8

7

8

3/30/2021

5

Functions of a vector variable

• We don’t know what u(x, t) is, so we will approximate it

– First, divide the interval [a, b] into nx sub-intervals,
each of width h

– Thus, xk = a + kh so and

• Next, we cannot approximate the solution at each point in time,
so we will break time into steps

– Define tℓ = t0 + ℓt

• We will try to approximate u(xk, tℓ)

– As before, u(xk, tℓ) ≈ uk,ℓ

The heat equation

9

0x a=
xnx b=

Functions of a vector variable

• To start, we have our initial conditions:

– In this case, u(xk, t0) ≈ uk,0= 20°C for an k = 1, 2, …, nx – 1

• We also have two boundary conditions:

– One side of the bar is in contact with a heat sink at 0°C

• Thus, u(a, tℓ) = u(x0, tℓ) = u0, ℓ = 0 for ℓ = 0, 1, 2, 3, …

– The other side is in contact with a heat source at 100°C

• Thus, u(b, tℓ) = = 100 for ℓ = 0, 1, 2, 3, …

The heat equation

10ℓ

k
uk,ℓ

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

() ,,
x xn nu x t u=

9

10

3/30/2021

6

Functions of a vector variable

• So now what?

The heat equation

11

() ()
() () ()

2

, 2 , ,
, ,

u x h t u x t u x h t
u x t t u x t t

h
a

− − + +
+  = + 

() ()
() () ()

2

, 2 , ,
, ,

k k k

k k

u x h t u x t u x h t
u x t t u x t t

h
a

− − + +
+  = + 

() ()
() () ()1 1

1 2

, 2 , ,
, ,

k k k

k k

u x t u x t u x t
u x t u x t t

h
a − +

+

− +
= + 

1, , 1,

, 1 , 2

2k k k

k k

u u u
u u t

h
a − +

+

− +
= + 

Functions of a vector variable

• Let’s zoom in:

The heat equation

12

ℓ

k
uk,ℓ

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ℓ

k

0 1 2 3 4

10

9

8

7

u10,0

u9,0

u8,0

u7,0

u10,1

u9,1

u8,1

u7,1

u10,2

u9,2

u8,2

u7,2

u10,3

u9,3

u8,3

u7,3

u10,4

u9,4

u8,4

u7,4

20°C

100°C

1, , 1,

, 1 , 2

2k k k

k k

u u u
u u t

h
a − +

+

− +
= + 

8,0 9,0 10,0

9,1 9,0 2

2u u u
u u t

h
a

− +
= + 

7,0 8,0 9,0

8,1 8,0 2

2u u u
u u t

h
a

− +
= +  8,1 9,1 10,1

9,2 9,1 2

2u u u
u u t

h
a

− +
= + 

11

12

3/30/2021

7

Restrictions

• There is one restriction to this algorithm:

– A reasonable strategy: given a and h, suppose we want to
approximate the solution from t0 to tf

• We want so

• Thus, let’s ensure

• That is,

The heat equation

13

2

1

2

t

h

a


0t fn t t t = −
0f

t

t t
t

n

−
 =

0

2

1

4

f

t

t t

n h

a−


()

2

0

1

4t f

h

n t ta


−

()0

2

4 f

t

t t
n

h

a −


()0

2

4 f

t

t t
n

h

a −
=  
  

Implementation
function [xs, ts, Us] = heat(alpha, x_rng, t_rng, u_init, u_bndry, nx)

h = (x_rng(2) - x_rng(1))/nx;

nt = ceil(4.0*alpha*(t_rng(2) - t_rng(1))/h^2)

dt = (t_rng(2) - t_rng(1))/nt

xs = linspace(x_rng(1), x_rng(2), nx + 1)';

ts = linspace(t_rng(1), t_rng(2), nt + 1);

Us = zeros(nx + 1, nt + 1);

for k = 2:nx

Us(k, 1) = u_init(xs(k));

end

Us([1, nx+1], 1) = u_bndry(ts(1));

for ell = 1:nt

for k = 2:nx

Us(k, ell + 1) = Us(k, ell) ...

+ alpha*dt*(Us(k-1, ell) - 2*Us(k, ell) + Us(k+1, ell))/h^2;

end

Us([1, nx+1], ell+1) = u_bndry(ts(ell+1));

end

end

The heat equation

14

alpha
The diffusivity coefficientx_rng
A 2-dimensional vector [a, b]t_rng
A 2-dimensional vector [t0, tf]u_init
A function of the spatial variable x
that gives the initial state at that
point

u_bndry
A function of the time variable t
that returns a 2-dimensional
vector giving the left and right
boundary values at that point in
time

nx
The number of sub-intervals we
will break the interval [a, b] into

13

14

3/30/2021

8

Implementation

• Why not just program this in C++?

– It seems like a straight-forward translation

• MATLAB is an interpreted language, meaning it is, in general, slow

– There are, however, functions, that simply call compiled
routines

– Calling a compiled routine can be as fast as authoring that
function in C++

• Where can we accomplish such a speed up?

The heat equation

15

Implementation

• Many vector-based functions execute faster than a
corresponding for loop:

for k = 2:nx

Us(k, 1) = u_init(xs(k));

end

Us(2:nx, 1) = u_init(xs(2:nx));

– This requires that u_init work on a vector-valued argument
u1_init = @(x)(20.0);

u1_init = @(x)(20.0*ones(size(x));

The heat equation

16

15

16

3/30/2021

9

Implementation

• Additionally, the operation of calculating xk+1 – 2xk + xk–1 is so
common, there is a MATLAB function to repeated perform this:

diff(x); # This has one fewer entries

x(2) - x(1)

x(3) - x(2)

.

.

.

x(end) - x(end-1)

diff(x, 2); # This has two fewer entries

x(3) - 2*x(2) + x(1)

x(4) - 2*x(3) + x(2)

.

.

.

x(end) - 2*x(end-1) + x(end-2)

The heat equation

17

Implementation

function [xs, ts, Us] = heat(alpha, x_rng, t_rng, u_init, u_bndry, nx)

h = (x_rng(2) - x_rng(1))/nx;

nt = ceil(4.0*alpha*(t_rng(2) - t_rng(1))/h^2)

dt = (t_rng(2) - t_rng(1))/nt

xs = linspace(x_rng(1), x_rng(2), nx + 1)';

ts = linspace(t_rng(1), t_rng(2), nt + 1);

Us = zeros(nx + 1, nt + 1);

Us(2:nx, 1) = u_init(xs(2:nx));

Us([1, nx+1], 1) = u_bndry(ts(1));

for ell = 1:nt

Us(2:nx, ell + 1) = Us(2:nx, ell) + alpha*dt*diff(Us(:, ell), 2)/h^2;

Us([1, nx+1], ell+1) = u_bndry(ts(ell+1));

end

end

The heat equation

18

17

18

3/30/2021

10

Example 1

• Consider this example:
>> u1_init = @(x)(20.0*ones(size(x)));

>> u1_bndry = @(t)([0.0, 100.0]');

>> [x1s, t1s, U1s] = heat(0.3, [0, 1], [0, 0.5], u1_init, u1_bndry, 10);

>> mesh(t1s, x1s, U1s);

The heat equation

19

Example 1

• Recalling that nx = 10, we see how the temperature changes over
time

The heat equation

20

19

20

3/30/2021

11

Example 2

• Consider this example:
>> u1_init = @(x)(20.0*ones(size(x)));

>> u2_bndry = @(t)((t > 0.25)*[0.0, 80.0]' + [0.0, 20.0]');

>> [x2s, t2s, U2s] = heat(0.3, [0, 1], [0, 0.5], u2_init, u2_bndry, 10);

>> mesh(t2s, x2s, U2s);

The heat equation

21

Example 2

• It starts to cool on the one side, but then the other side starts to
heat up after 0.25 seconds

The heat equation

22

21

22

3/30/2021

12

Error analysis

• Recall the formula using h was O(h2),
but the formula using t was O(t)

– Recall, however, that

– Thus, so if the error is O(t), it is also O(h2)

The heat equation

23

()0

2

4 f

t

t t
n

h

a −


0f

t

t t
t

n

−
 =

2
0

4

f

t

t th

na

−


2

4

h
t

a
 

Neumann boundary conditions

• What happens if one boundary is insulated or has a Neumann
boundary condition?

– Recall, in our code, we

• Calculated the next interior points

• Then set the boundary conditions for that same ℓ

The heat equation

24

ℓ

k
uk,ℓ

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

23

24

3/30/2021

13

Neumann boundary conditions

• Recall from the last topic, we saw that if a boundary satisfied a
Neumann condition, the following were true:

• Suppose a boundary has a Neumann condition:

– Calculated the next interior points

– Calculate the boundary value based on the Neumann condition

The heat equation

25

()1

0 1 2

2 4 1

3 3 3
au u h u u= − + −

()1

1 2

2 4 1

3 3 3
n b n nu u h u u− −= + −

Implementation

function [xs, ts, Us] = heat(alpha, x_rng, t_rng, u_init, u_bndry, u_dirichlet, nx)

h = (x_rng(2) - x_rng(1))/nx;

nt = ceil(4.0*alpha*(t_rng(2) - t_rng(1))/h^2)

dt = (t_rng(2) - t_rng(1))/nt

xs = linspace(x_rng(1), x_rng(2), nx + 1)';

ts = linspace(t_rng(1), t_rng(2), nt + 1);

Us = zeros(nx + 1, nt + 1);

Us(2:nx, 1) = u_init(xs(2:nx));

Us([1, nx+1], 1) = u_bndry(ts(1));

for ell = 1:nt

Us(2:nx, ell + 1) = Us(2:nx, ell) + alpha*dt*diff(Us(:, ell), 2)/h^2;

Us([1, nx+1], ell+1) = u_bndry(ts(ell+1));

end

end

The heat equation

26

25

26

3/30/2021

14

Implementation

function [xs, ts, Us] = heat(alpha, x_rng, t_rng, u_init, u_bndry, u_dirichlet, nx)

Initialization...

dirichlet = u_dirichlet(ts(1));

boundary = u_bndry(ts(1));

if dirichlet(1)

Us(1, 1) = boundary(1);

else

Us(1, 1) = -2.0/3.0*boundary(1)*h + 4.0/3.0*Us(2, 1) - 1.0/3.0*Us(3, 1);

end

if dirichlet(2)

Us(nx+1, 1) = boundary(2);

else

Us(nx+1, 1) = 2.0/3.0*boundary(2)*h + 4.0/3.0*Us(nx, 1) - 1.0/3.0*Us(nx-1, 1);

end

Populate the balance of the matrix 'Us'

end

The heat equation

27

()1

0 1 2

2 4 1

3 3 3
au u h u u= − + −

()1

1 2

2 4 1

3 3 3
n b n nu u h u u− −= + −

Implementation
for ell = 1:nt

Us(2:nx, ell + 1) = Us(2:nx, ell) + alpha*dt*diff(Us(:, ell), 2)/h^2;

dirichlet = u_dirichlet(ts(ell + 1));

boundary = u_bndry(ts(ell + 1));

if dirichlet(1)

Us(1, ell+1) = boundary(1);

else

Us(1, ell+1) = -2.0/3.0*boundary(1)*h + 4.0/3.0*Us(2, ell+1) ...

- 1.0/3.0*Us(3, ell+1);

end

if dirichlet(2)

Us(nx+1, ell+1) = boundary(2);

else

Us(nx+1, ell+1) = 2.0/3.0*boundary(2)*h + 4.0/3.0*Us(nx, ell+1) ...

- 1.0/3.0*Us(nx-1, ell+1);

end

end

end

The heat equation

28

27

28

3/30/2021

15

Example 3

• Consider this example:
>> u3_in = @(x)(x.^2);

>> u3_by = @(t)([0.0, 0.0]');

>> u3_dt = @(5)([false, false]');

>> [x3s, t3s, U3s] = heat(0.3, [0, 1], [0, 0.5], u3_in, u3_by, u3_dt, 10);

>> mesh(t3s, x3s, U3s);

The heat equation

29

1

2

0

1 1

1 0 3
x dx =

− 

Example 3

• The temperature will approach the average temperature

The heat equation

30

29

30

3/30/2021

16

Example 4

• Consider this example:
>> u4_in = @(x)(20.0*ones(size(x)));

>> u4_by = @(t)([0.0, 100.0]');

>> u4_dt = @(5)([false, true]');

>> [x4s, t4s, U4s] = heat(0.3, [0, 1], [0, 0.5], u4_in, u4_by, u4_dt, 10);

>> mesh(t4s, x4s, U4s);

The heat equation

31

Example 4

• Note the temperature heats up across the length

– It will approach a uniform temperature of 100°C

The heat equation

32

31

32

3/30/2021

17

Summary

• Following this topic, you now

– Understand how to approximate the heat equation with a
finite-difference equation

– Have seen how to approximate the solution to the heat equation
given both initial states and boundary values in one dimension

– Are aware of how to implement such a solution in MATLAB

– Have seen two examples

– Understand how to deal with insulated boundary conditions with
implementations and examples

The heat equation

33

References

[1] https://en.wikipedia.org/wiki/Heat_equation

The heat equation

34

33

34

3/30/2021

18

Acknowledgments

None so far.

The heat equation

35

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

The heat equation

36

35

36

3/30/2021

19

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

The heat equation

37

37

